Amigamain

Matthias Rustler

Amigamain

] COLLABORATORS
TITLE :
Amigamain
ACTION NAME DATE SIGNATURE
WRITTEN BY Matthias Rustler January 13, 2023

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

Amigamain

Contents

1 Amigamain

LT ADbout . . . o e e
1.2 TemGen o L e e e
1.3 HOW IO USE e
L4 Switches L e e
1.5 Configuration functions L e e
1.6 Functions
1.7 Config o o e e e e
L8 EXit e
1.9 Copyright o

1.10 Author o e e

Amigamain

Chapter 1

Amigamain

1.1 About

Generic.tg is an input file for TemGen. It
amigamain.c and amigamain.h.
You can switch on/off several common Amiga features like:
* Command line parameters (ReadArq)
Tooltype parameters
open shared libraries
forbid start from Workbench or Shell
localisation

* % % ot

TemGen

How to use

Switches

Configuration functions
Functions

struct Config
Application exit
Copyright

Author

1.2 TemGen

The template generator ’'TemGen’ has its own documentation.

Some quick notes:
Commands start with @’ as first character in a line.

creates

the files

P

Amigamain 2/5

Some characters (#, $, ") have a special meaning. If they should appear in the
resulting code they must be prefixed with ’\’. Example ’\#include <stdio.h>’.

1.3 How to use

Copy the TemGen binary bin/tg to your search path.
Make a copy of generic.tg and open it in an editor.
Ajust the switches and functions to your needs. The switches are at the

beginning and the functions at the end of the #?.tg file.

Run 'tg’ with the file. The files amigamain.c and amigamain.h are created.
Normally you shouldn’t never change this files manually.

If you want locale support you have to make a copy of generic.cd and add
your strings. Don’t remove the existing strings. Create #?_strings.h
for example with ’catcomp app.cd CTFILE app_strings.h’.

Create at least one #?.c file with the application code.

Build the binary.

1.4 Switches

You can switch on/off several features. Most of them are bool values. Don’t
forget to prefix true and false with a ’'$’ character.

@ Sversion = "MyApp 0.1 (1.1.2004)"

Version string (without ’\VER:’)

Use "" if you don’t want a version string

@ Sapplication = ["APP_run ()", "APP_clean()", "app.h"]

The first function is called in 'main’ after the libraries have successfully
been opened. The second function is called in the cleanup function.
The third entry is the name of file which is included with ’#include "..."’.

@ Sforbidwb = $false
Set this to $true if you don’t want the application to start from Workbench

@ S$forbidcli = $false
Set this to $true if you don’t want the application to start from Shell

@ Sopencon = S$true

If you start your application from Workbench your input/output to stdin, stdout,
Output () and Input () would go to NIL:. $true opens con: windows in auto mode
for stdin, stdout and Output (). This means that up to 3 con: windows are opened.
This is ugly but it’s indended as a backdoor if a Workbench application

prints to console.

@ Sdelay = 200
The con: windows created with S$Sopencon are closed in the cleanup function.
The delay time in 1/50 seconds gives the user some time to read the content

Amigamain

3/5

of the con: windows before they are closed

@ Smessage_request = Strue
Set this to $true if the message functions shall open an EasyRequest.

@ Smessage_output = Strue
Set this to $true if the message functions shall print to Output ().

@ Srequest_title = "APP Problem"
This text is shown as title in the Easyrequest of the message functions
if you don’t have locale support.

@ Stooltypes = S$Strue
Strue inserts code to read tooltype arguments

@ Sreadargs = S$true
Strue inserts code to read command line arguments

@ S$locale = Strue
Strue switches on locale support.

@ $loc_builtin = "english"
@ $loc_header = "app_strings.h"
@ Sloc_catalog = "app.catalog"

This are additional parameters for locale support.

1.5 Configuration functions

@ $library(Basevariable, Libraryname, Minversion , Basetype)
Inserts code to open and close a shared library.

Use "" for Basetype if it’s "struct Library ="

Examples:

@ S$library("WorkbenchBase" , "workbench.library" , 40 , "")

@ S$library("LocaleBase" , "locale.library" , 40 , "LocaleBase")
@ Slibrary("TimerBase , """ , 0 , ")

The last one only creates the base variable.

Note:
Most available libraries are already in generig.tg. Just remove the
commend char '#’ to switch them on.

@ Sadd_config(type, variable name, default value)
Adds a member to struct Config.
Type can be "L" (LONG), "B" (BOOL) or "S" (STRING)

Examples:

@ $add_config("L", "xvalue", 5)

@ $add_config("B", "print", "TRUE")
@ Sadd_config("s", "pubscreen", "")

@ S$Sadd_tooltype(tooltype , config variable, type)

Querys the icon for a tooltype. If found it is stored in struct Config.
You have to create the config variable with $add_config. The type

of the tooltype must be the same as the type of the config variable.

Amigamain

4/5

Tooltypes are case sensitive.

Examples:

@ Sadd_tooltype ("PUBSCREEN", "pubscreen" , "S")
@ S$add_tooltype ("PRINT" , "print" , "B")
@ Sadd_tooltype ("XVALUE" , "xvalue" , "L"M)

@ $Sadd_arg(arg, config variable, type)

Adds a single entry to the readarg template. If found it is stored

in struct Config. You have to create the config variable with $add_config.
The type of arg must be the same as the type of the config variable.

Examples:

@ $add_arg("P=PUBSCREEN/K", "pubscreen", "S")
@ S$add_arg("XVALUE/N" , "xvalue" , "L")
@ $add_arg("PRINT/S" , "print" , "B")

@ $finish_arg()
This function must be called after the last $add_arg

1.6 Functions

The resulting amigamain.c contains this functions:

LONG show_request (char *title, char xtext, char *button, ...);
Opens an EasyRequest.

Example:
show_request ("Error", "Couldn’t open %s %1d", "OK", "foo.library", 32);

LONG show_request_args(char xtitle, char xtext, char xbutton, va_list ap);
Like show_request, but with va_list

void vmessagef (char *format, va_list ap);
Like vprintf, but you can adjust with switches whether output goes to
Easyrequest and/or Output () .

void messagef (char xformat, ...);
Like printf, but you can adjust with switches whether output goes to
Easyrequest and/or Output ().

void messagef_loc (LONG msgid, ...);
Like messagef, but with msgid as parameter. This function is only created

if you set $locale to $true.

char xstrcpy_malloc (const char *s);
Allocates some RAM and copies the string s to it.

Important Note
All vararg parameters must be 32 bit. Use %$1d instead of %d.

1.7 Config

Amigamain 5/5

amigamain.h contains the struct Config. The following entries are always created:

BOOL all_libraries_open:
Readonly; TRUE after all libraries have successfully been opended

BOOL start_from_ wb
Readonly; TRUE if application was started from Workbench

struct Window xregwin
Read/Write: reference window for Easyrequest

BOOL message_request
Read/Write: TRUE if message functions shall open EasyRequest

BOOL message_output
Read/Write: TRUE if message functions shall print to Output ()
Additional entries are created with $add_config

The variable ’config’ 1is created in amigamain.c

1.8 Exit

The cleanup function is used with 'atexit’. If you want to exit your application
just call ’"exit (EXIT_SUCCESS);’ and the cleanup function is automatically called.
Query config.all_libraries_open to avoid calling library functions if the
libraries couldn’t be opened.

1.9 Copyright

TemGen is open source (GPL) by Marek Letowski

generic.tg and the examples are public domain.

1.10 Author

Please report bugs, changes and feature requests to:

Matthias Rustler
MATIL: mrustler@t-online.de
WWW: http://mrustler.bei.t-online.de

	Amigamain
	About
	TemGen
	How to use
	Switches
	Configuration functions
	Functions
	Config
	Exit
	Copyright
	Author

